

HERRAMIENTAS DE ROBÓTICA

Proyecto de Semestre - Parte 2 - 3

Diseño y modelado de un robot manipulador de 2GdL

▪ María Paula Carreño Fernández – carreno.mariap@javeriana.edu.co

▪ Sergio Lavao Osorio – s.lavaoo@javeriana.edu.co

PARTE 2: MODELADO CINEMÁTICO

ROBOT

Para implementar nuestro robot manipulador de

2GdL primero se tiene en cuenta los parámetros

geométricos de la matriz DH definidos en la

primera entrega, siendo los siguientes:

Con base a la tabla 1, se define entonces en matlab

la estructura del robot para poder implementar los

algoritmos de la siguiente forma:

Además, se agregó nuestro modelo CAD del robot

para las validaciones importando individualmente

las partes del robot (base, brazo 1 y brazo 2) en

formato STL y agregándolas a la carpeta model

como link0, link1 y link2 respectivamente.

Luego se hizo uso de la propiedad de plot3d ‘path’

y especificando la ruta, como resultado se obtiene

nuestro modelo en Matlab:

1. Resuelva el problema cinemático directo

utilizando matrices de transformación

homogénea. Implementar algoritmo en Matlab

y validar con Toolbox de Robótica.

Implementando la función ForwardKinematics

se tienen como parámetros de entrada la

estructura del robot (ilustración 1) y las

posiciones articulares q, a lo largo del tiempo

de la trayectoria ya definida, para este caso se

implementaron las q de los dos primeros

grados de libertad del robot puma y se obtuvo

lo siguiente:

Ilustración 3. Validación ForwardKinematics pluma

Como se emplearon las q definidas para el puma

para el cual se tienen rotaciones en las

articulaciones 2 y 3, en nuestro caso solo

Elemento α a θ d

1 0 0.1m θ1=π/2 0.007m

2 0 0.1m θ2=0 0

Tabla 1. Parámetros DH

Ilustración 2. Estructura del robot PLUMA

Ilustración 1. Modelo Pluma.

mailto:carreno.mariap@javeriana.edu.co
mailto:s.lavaoo@javeriana.edu.co

tendríamos movimiento en el brazo 2, por lo que

se entiende que la trayectoria calculada final

correspondería a un arco.

Se puede encontrar el código en el repositorio

como plumaFKTest, así como el gif del

movimiento en results.

2. Resuelva el problema cinemático inverso

(método Jacobiano). Asegúrese que la solución

permita encontrar todas las posibles

configuraciones (poses) según los

requerimientos de la tarea y las restricciones

cinemáticas del brazo. Implementar algoritmo

en Matlab y validar con Toolbox de Robótica.

Para este caso se definió una línea recta

implementando la función Traj_Planner, que

estuviera dentro del campo de trabajo del robot

pluma, se hace uso de InverseKinematics y se

grafican ambas trayectorias, con el propósito de

comparar su comportamiento de la siguiente

forma:

Como se observa existe un error al inicio de la

trayectoria, que es debido a que la posición en

reposo del robot no se encuentra en un punto

cercano a la trayectoria que debe seguir, y como

nuestro algoritmo no utiliza un lazo de control en

el que se seleccione la trayectoria cuando exista un

mínimo error, se tiene como consecuencia un

comportamiento no deseado mientras se estabiliza.

Se tiene luego la validación con el robot pluma:

3. Defina las soluciones de trayectorias

cartesianas (interpoladas) requeridas para

ejecutar las tareas propias del proceso

(posiciones, velocidades y aceleraciones).

Exprese las trayectorias mediante polinomios

(resueltos). Grafique las trayectorias articulares

correspondientes usado la solución cinemática

inversa. Implementar algoritmo en Matlab y

validar con Toolbox de Robótica.

Se encontraron los puntos de trayectoria

importando el esquema del dibujo en blender,

en donde se definen los puntos iniciales y

finales de cada uno de los trazos que

constituyen el dibujo a realizar, de cual se

obtienen un total de 12 lineas, de las cuales se

obtiene su punto inicial y final, se realiza una

función que halle la trayectoria de cada linea

y las concatene para obtener una unica matriz

que describa toda la trayectoria a realizar. Se

puede encontrar el desarrollo de la función

como DrawTrajPlanner, como resultado se

obtiene:

Ilustración 6. Puntos de trayectoria del dibujo

Ilustración 5. Trayectoria usando
InverseKinematics

Ilustración 4. Validación InverseKinematics

Se compara la trayectoria deseada (ilustración 6)

con la generada implementando Inverse

Kinematics obteniendo como resultado:

Al implementar InverseKinematics se obtiene un

error al inicio de la trayectoria como se explicó

anteriormente. Cómo se resultado se tiene:

PARTE 3: MODELADO DINÁMICO ROBOT

4. Calcule el modelo dinámico inverso del brazo

utilizando la formulación de Euler-Lagrange de

acuerdo con su diseño cinemático y utilizando

elementos estructurales simples (cuerpos

simples).

Una vez se tiene el modelo en Simulink, se

asignan (distancias y masas) en un archivo

.mat.

Donde distancia lc_1[m], lc_2[m], m_1[kg] y

m_2[kg].

Es posible verificar el modelo dinamico

analizando el comportamiento de las salidas

en funcion de los torques de entrada, Tao_1

positivo y Tao_2 negativo, donde el resultado

en el espacio articular para q_1 y q_2 debe

ser exponencial(Posición), q_1d y q_2d lineal

(velocidad).

Ilustración 7. Perfil de velocidad, trayectoria total

Ilustración 8. Comparación de trayectorias

Ilustración 9. Validación trayectoria robot pluma

Ilustración 9. Modelo dinámico Euler Lagrange, Simulink.

Ilustración 10. Parámetros del robot.

Ilustración 11. Parámetros del robot.

Los archivos del modelo 3d y códigos de Matlab se

pueden encontrar en el siguiente repositorio:

https://github.com/SergioLavao/PlumaBot

https://github.com/SergioLavao/PlumaBot

