HERRAMIENTAS DE ROBOTICA
Proyecto de Semestre - Parte 2 - 3
Disefio y modelado de un robot manipulador de 2GdL

= Maria Paula Carrefio Fernandez — carreno.mariap@javeriana.edu.co

= Sergio Lavao Osorio — s.lavaoo@javeriana.edu.co

PARTE 2: MODELADO CINEMATICO
ROBOT

Para implementar nuestro robot manipulador de
2GdL primero se tiene en cuenta los pardmetros
geométricos de la matriz DH definidos en la
primera entrega, siendo los siguientes:

Elemento a a 0 d
1 0 0.1m | 01> | 0.007m
2 0 0.1Im | 0220 0

Tabla 1. Parametros DH

Con base a la tabla 1, se define entonces en matlab
la estructura del robot para poder implementar los
algoritmos de la siguiente forma:

function [PLUMA, P&RA&M] = pluma_parami)
Ll=Linki{[@ 8 a.l 8 a 1,'standard');
L2=Link([@ -@.887 a.1 @ @ 1, 'standard');

PLUMA = Seriallink([L1 L21);
PLUMA. name="PLUMA" ;

llustracion 2. Estructura del robot PLUMA

Ademas, se agregd nuestro modelo CAD del robot
para las validaciones importando individualmente
las partes del robot (base, brazo 1 y brazo 2) en
formato STL y agregandolas a la carpeta model
como link0, link1 y link2 respectivamente.

Luego se hizo uso de la propiedad de plot3d ‘path’
y especificando la ruta, como resultado se obtiene
nuestro modelo en Matlab:

0.08
0.06
0.04

N 0.02

0
-0.02

llustracion 1. Modelo Pluma.

1. Resuelva el problema cineméatico directo
utilizando matrices de transformacion
homogénea. Implementar algoritmo en Matlab
y validar con Toolbox de Robdtica.

Implementando la funcion ForwardKinematics
se tienen como parametros de entrada la
estructura del robot (ilustracion 1) y las
posiciones articulares g, a lo largo del tiempo
de la trayectoria ya definida, para este caso se
implementaron las q de los dos primeros
grados de libertad del robot puma y se obtuvo
lo siguiente:

01

0.05

-0.058
0.2

llustracion 3. Validacion ForwardKinematics pluma

Como se emplearon las g definidas para el puma
para el cual se tienen rotaciones en las
articulaciones 2 y 3, en nuestro caso solo

mailto:carreno.mariap@javeriana.edu.co
mailto:s.lavaoo@javeriana.edu.co

tendriamos movimiento en el brazo 2, por lo que
se entiende que la trayectoria calculada final
corresponderia a un arco.

Se puede encontrar el codigo en el repositorio
como plumaFKTest, asi como el gif del
movimiento en results.

2. Resuelva el problema cinematico inverso
(método Jacobiano). Asegurese que la solucion
permita encontrar todas las posibles
configuraciones (poses) segun los
requerimientos de la tarea y las restricciones
cinemaéticas del brazo. Implementar algoritmo
en Matlab y validar con Toolbox de Robotica.

Para este caso se definio6 una linea recta
implementando la funcion Traj_Planner, que
estuviera dentro del campo de trabajo del robot
pluma, se hace uso de InverseKinematics y se
grafican ambas trayectorias, con el proposito de
comparar su comportamiento de la siguiente
forma:

-0.1

L L L L L L L
0.2 0.15 0.1 0.05 0 -0.05 -0.1

llustracion 5. Trayectoria usando
InverseKinematics

Como se observa existe un error al inicio de la
trayectoria, que es debido a que la posicion en
reposo del robot no se encuentra en un punto
cercano a la trayectoria que debe seguir, y como
nuestro algoritmo no utiliza un lazo de control en
el que se seleccione la trayectoria cuando exista un
minimo error, se tiene como consecuencia un
comportamiento no deseado mientras se estabiliza.

Se tiene luego la validacion con el robot pluma:

3.

llustracion 4. Validacion InverseKinematics

Defina las soluciones de trayectorias
cartesianas (interpoladas) requeridas para
ejecutar las tareas propias del proceso
(posiciones, velocidades y aceleraciones).
Exprese las trayectorias mediante polinomios
(resueltos). Grafique las trayectorias articulares
correspondientes usado la solucion cinemaética
inversa. Implementar algoritmo en Matlab y

validar con Toolbox de Robotica.

Se encontraron los puntos de trayectoria
importando el esquema del dibujo en blender,
en donde se definen los puntos iniciales y
finales de cada uno de los trazos que
constituyen el dibujo a realizar, de cual se
obtienen un total de 12 lineas, de las cuales se
obtiene su punto inicial y final, se realiza una
funcion que halle la trayectoria de cada linea
y las concatene para obtener una unica matriz
que describa toda la trayectoria a realizar. Se
puede encontrar el desarrollo de la funcién
como DrawTrajPlanner, como resultado se
obtiene:

0131
012
011
0.1F
0.09
0.08
0.07 1

0.06 [

0.05 \ \ \ \ \ \ \)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

llustracion 6. Puntos de trayectoria del dibujo

0012 Trajectory Velocity Profile (Magnitude)
. T T T T T T T

"M N

0.008

0.006

Velocity[m/s]

0.004

0.002

. . . . "
0 100 200 300 400 500 600 700 800 900 1000
Sample[n]

llustracion 7. Perfil de velocidad, trayectoria total

Se compara la trayectoria deseada (ilustracion 6)

con la generada implementando Inverse
Kinematics obteniendo como resultado:

0.14
0.12

0.1
0.08
0.06
0.04
0.02

of

0.02 L L L L L L L L L i
-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.7 008 0.09

llustracion 8. Comparacion de trayectorias

Al implementar InverseKinematics se obtiene un

error al inicio de la trayectoria como se explico
anteriormente. Como se resultado se tiene:

llustracion 9. Validacion trayectoria robot pluma

PARTE 3: MODELADO DINAMICO ROBOT

4. Calcule el modelo dindmico inverso del brazo

utilizando la formulacién de Euler-Lagrange de
acuerdo con su disefio cinematico y utilizando
elementos estructurales simples (cuerpos
simples).

[]

Euler_Lagrange.

llustracion 9. Modelo dindmico Euler Lagrange, Simulink.

Una vez se tiene el modelo en Simulink, se
asignan (distancias y masas) en un archivo
.mat.

Mame Value
o Ic_1 0.1000
olc? 0.1000
om_1 0.0100
m_2 0.0100

llustracion 10. Parametros del robot.

Donde distancia Ic_1[m], Ic_2[m], m_1[kg] y
m_2[kg].

llustracion 11. Pardmetros del robot.

Es posible verificar el modelo dinamico
analizando el comportamiento de las salidas
en funcion de los torques de entrada, Tao_1
positivo y Tao_2 negativo, donde el resultado
en el espacio articular paraq_1yq_2 debe
ser exponencial(Posicién), q_1d y q_2d lineal
(velocidad).

Los archivos del modelo 3d y codigos de Matlab se
pueden encontrar en el siguiente repositorio:

https://github.com/SergioLavao/PlumaBot

https://github.com/SergioLavao/PlumaBot

